The Bankers’ New Clothes: Arguments for simpler capital and much reduced leverage

It always pays to make sure you expose yourself to the opposite view. This post looks at some of the arguments for simpler and higher bank capital requirements put forward by Professors Admati and Hellwig. They have published a number of papers and a book on the topic but this post refers chiefly to their book “The Bankers’ New Clothes” and to a paper ‘The Parade of the Banker’s New Clothes Continues: 31 Flawed Claims Debunked”. As I understand it, the key elements of their argument are that:

  • Banks are inherently risky businesses,
  • Excessive borrowing by banks increases their inherent riskiness, but
  • Banks are only able to maintain this excessive level of borrowing because
    • Flawed risk based capital models underestimate the true capital requirements of the business
    • Market discipline also allows excessive borrowing because it is assumed that the government will bail out banks if the situation turns out badly

They identify a variety of ways of dealing with the problem of excessive leverage (controls on bank lending, liquidity requirements and capital requirements) but argue that substantially more common equity is the best solution because:

  • It directly reduces the probability that a bank will fail (i.e. all other things being equal, more common equity reduces the risk of insolvency),
  • A higher level of solvency protection has the added benefit of also reducing the risk of illiquidity, and
  • Contrary to claims by the banking industry, there is no net cost to society in holding more common equity because the dilution in ROE will be offset by a decline in the required return on equity

They concede that there will be some cost associated with unwinding the Too Big To Fail (TBTF) benefit that large banks currently enjoy on both the amount banks can borrow and on the cost of that funding but argue there is still no net cost to society in unwinding this undeserved subsidy. The book, in particular, gets glowing reviews for offering a compelling case for requiring banks to operate with much lower levels of leverage and for pointing out the folly of risk based capital requirements.

There are a number of areas where I find myself in agreement with the points they argue but I can’t make the leap to accept their conclusion that much a higher capital requirement based on a simple leverage ratio calculation is the best solution. I have written this post to help me think through the challenges they offer my beliefs about how banks should be capitalised.

It is useful, I think, to first set out the areas where we (well me at least) might agree in principle with what they say; i.e.

  • Financial crises clearly do impose significant costs on society and excessive borrowing does tend to make a financial system fragile (the trick is to agree what is “excessive”)
  • Better regulation and supervision have a role to play in minimising the risk of bank failure (i.e. market discipline alone is probably not enough)
  • Public policy should consider all costs, not just those of the banking industry
  • All balance sheets embody a trade-off between enterprise risk, return and leverage (i.e. increasing leverage does increase risk)

It is less clear however that:

  • The economics of bank financing are subject to exactly the same rules as that which apply to non-financial companies (i.e. rather than asserting that banks should be compared with non-financial companies, it is important to understand how banks are different)
  • A policy of zero failure for banks is necessarily the right one, or indeed even achievable (i.e. would it be better to engineer ways in which banks can fail without dragging the economy down with them)
  • Fail safe mechanisms, such as the bail in of pre-positioned liabilities, have no prospect of working as intended
  • The assertion that “most” of the new regulation intended to make banks safer and easier to resolve has been “rejected, diluted or delayed” is a valid assessment of what has actually happened under Basel III
  • That liquidity events requiring lender of last resort support from the central bank are always a solvency problem

Drawing on some previous posts dealing with these issues (see here, here and here), I propose to focus on the following questions:

  • How does the cost of bank financing respond to changes in leverage?
  • Are the risk based capital requirements as fundamentally flawed as the authors claim?
  • Are risk management incentives for bankers always better when they are required to hold increasing levels of common equity?
  • Do the increased loss absorption features of Basel III compliant hybrids (in particular, the power to trigger conversion or bail in of the instruments) offer a way to impose losses on failed banks without disrupting the economy or requiring public support

How does leverage affect the cost of bank financing?

Increasing the proportion of equity funding, the authors argue, reduces the risk that shareholders are exposed to because each dollar of equity they have invested

“ will be affected less intensely by the uncertainty associated with the investments”

“when shareholders bear less risk per dollar invested, the rate of return they require is lower”

“Therefore, taking the costs of equity as fixed and independent of the mix of equity and debt involves a fundamental fallacy”.

Banker’sNew Clothes (p101)

The basic facts they set out are not really contentious; the mix of debt and equity does impact required returns. The authors focus on what happens to common equity but changing leverage impacts both debt and equity. This is very clear in the way that rating agencies consider all of the points nominated by the authors when assigning a debt rating. Reduced equity funding will likely lead to a decline in the senior and subordinated debt ratings and higher costs (plus reduced access to funding in absolute dollar terms) while higher equity will be a positive rating factor.

Banks are not immune to these fundamental laws but it is still useful to understand how the outcomes are shaped by the special features of a bank balance sheet. My views here incorporate two of the claims they “debunk” in their paper; specifically

Flawed Claim #4: The key insights from corporate finance about the economics of funding, including those of Modigliani and Miller, are not relevant for banks because banks are different from other companies

Flawed Claim #5: Banks are special because they create money

One of the features that defines a bank is the ability to take deposits. The cost of deposits however tends to be insulated from the effects of leverage. This is a design feature. Bank deposits are a major component of the money supply but need to be insensitive to adverse information about the issuing bank to function as money.

Wanting bank deposits to be information insensitive does not make them so. That is a function of their super senior position in the liability loss hierarchy, supplemented in many, if not most, banking systems by some form of limited deposit insurance (1). I credit a paper by Gary Gorton and George Pennacchi titled “Financial Intermediaries and Liquidity Creation” for crytalising this insight (an earlier post offers a short summary of that paper). Another paper titled “Why Bail-In? And How?” by Joseph Sommer proposes a different rationale for deposits having a super senior position insulated from the risk of insolvency but the implications for the impact of leverage on bank financing costs are much the same.

A large bank also relies on senior unsecured financing. This class of funding is more risky than deposits but still typically investment grade. This again is a design feature. Large banks target an investment grade rating in order to deliver, not only competitive financing costs, but equally (and perhaps more importantly) access to a larger pool of potential funding over a wider range of tenors. The investment grade rating depends of course on there being sufficient loss absorbing capital underwriting that outcome. There is no escaping this law of corporate finance. 

The debt rating of large banks is of course also tied up with the issue of banks being treated as Too Big To Fail (TBTF). That is a distortion in the market that needs to be addressed and the answer broadly is more capital though the rating agencies are reasonably agnostic on the form this capital should take in so far as the senior debt rating is concerned. Subject to having enough common equity anchoring the capital structure, more Tier 2 subordinated debt (or Tier 3 bail-in) will work just as well as more common equity for the purposes of reducing the value of implied government support currently embedded in the long term senior debt rating.

Admati and Hellwig are right – there is no free lunch in corporate finance

At this stage, all of this risk has to go somewhere. On that point I completely agree with Admati and Hellwig. There is no free lunch, the rating/risk of the senior tranches of financing depend on having enough of the right kinds of loss absorbing capital standing before them in the loss hierarchy. Where I part company is on the questions of how much capital is enough and what form it should take.

How much capital is (more than) enough?

Admati and Hellwig’s argument for more bank capital has two legs. Firstly, they note that banks are typically much more leveraged than industrial companies and question how can this be given the fundamental law of capital irrelevancy defined by Modigliani and Miller. Secondly, they argue that risk based capital requirements are fundamentally flawed and systematically under estimate how much capital is required.

Why are banks different?

Admati and Hellwig note that banks have less capital than industrial companies and conclude that this must be a result of the market relying on the assumption that banks will be bailed out. The existence of a government support uplift in the senior debt ratings of large banks is I think beyond debate. There is also broad support (even amongst many bankers) that this is not sound public policy and should ideally be unwound.

It is not obvious however that this wholly explains the difference in observed leverage. Rating agency models are relatively transparent in this regard (S&P in particular) and the additional capital required to achieve a rating uplift equivalent to the existing government support factor would still see banks more leveraged than the typical industrial company. Bank balance sheets do seem to be different from those of industrial companies.

Flawed risk models

The other leg to their argument is that risk based capital fundamentally under estimates capital requirements. I am broadly sympathetic to the sceptical view on how to use the outputs of risk models and have been for some time. An article I wrote in 2008, for example, challenged the convention of using a probability of default associated with the target debt rating to precisely calibrate the amount of capital a bank required.

The same basic concept of highly precise, high confidence level capital requirements is embedded in the Internal Ratings Based formula and was part of the reason the model results were misinterpreted and misused. Too many people assigned a degree of precision to the models that was not warranted. That does not mean however that risk models are totally useless.

Professors Admati and Hellwig use simple examples (e.g. how does the risk of loss increase if a personal borrower increases leverage on a home loan) to argue that banks need to hold more capital. While the basic principle is correct (all other things equal, leverage does increase risk), the authors’ discussion does not draw much (or possibly any?) attention to the way that requiring a borrower to have equity to support their borrowing reduces a bank’s exposure to movements in the value of the loan collateral.

In the examples presented, any decline in the value of the assets being financed flows through directly to the value of equity, with the inference that this would be true of a bank also. In practice, low risk weights assigned by banks to certain (low default – well secured) pools of lending reflect the existence of borrower’s equity that will absorb the first loss before the value of the loan itself is called into question.

A capital requirement for residential mortgages (typically one of the lowest risk weights and also most significant asset classes) that looks way too low when you note that house prices can easily decline by 10 or 20%, starts to make more sense when you recognise that that there is (or should be) a substantial pool of borrower equity taking the brunt of the initial decline in the value of collateral. The diversity of borrowers is also an important factor in reducing the credit risk of the exposures (though not necessarily the systemic risk of an overall meltdown in the economy). Where that is not the case (and hence the renewed focus on credit origination standards and macro prudential policy in general), then low risk weights are not justified.

I recognise that this argument (incorporating the value of the borrower’s equity) does not work for traded assets where the mark to market change in the value of the asset flows directly to the bank’s equity. It does however work for the kinds of assets on bank balance sheets that typically have very low risk weights (i.e. the primary concern of the leverage ratio advocates). It also does not preclude erring on the side of caution when calculating risk weights so long as the model respects the relative riskiness of the various assets impacting the value of equity.

How much also depends on the quality of risk management (and supervision)

The discussion of how much capital a bank requires should also recognise the distinction between how much a well managed bank needs and how much a poorly managed bank needs. In a sense, the authors are proposing that all banks, good and bad, should be made to hold the capital required by bad banks. Their focus on highlighting the risks of banking obscures the fact that prudent banking mitigates the downside and that well managed banks are not necessarily consigned to the extremes of risk the authors present as the norm of banking.

While not expressed in exactly that way, the distinction I am drawing is implicit in Basel III’s Total Loss Absorbing Capital (TLAC) requirements now being put in place. TLAC adds a substantial layer of additional loss absorption on top of already substantially strengthened common equity requirements. The base layer of capital can be thought of as what is required for a well managed, well supervised bank with a sound balance sheet and business model. APRA’s “Unquestionably Strong” benchmark for CET1 is a practical example of what this requirement looks like. The problem of course is that all banks argue they are good banks but the risk remains that they are in fact bad banks and we usually don’t find out the difference until it is too late. The higher TLAC requirement provides for this contingency.

What should count as capital?

I looked at this question in a recent post on the RBNZ’s proposal that virtually all of their TLAC requirement should be comprised of common equity. Admati and Hellwig side with the RBNZ but I believe that a mix of common equity and bail-in capital (along the lines proposed by APRA) is the better solution.

Read my earlier post for the long version, but the essence of my argument is that bail-in capital introduces a better discipline over bank management risk appetite than does holding more common equity. Calibrating common equity requirements to very high standards should always be the foundation of a bank capital structure. Capital buffers in particular should be calibrated to withstand very severe external shocks and to be resilient against some slippage in risk management.

The argument that shareholders’ need to have more “skin in the game” is very valid where the company is undercapitalised. Bail-in capital is not a substitute for getting the basics right. A bank that holds too little common equity, calibrated to an idealised view of both its own capabilities and of the capacity of the external environment to surprise the modellers, will likely find itself suppressing information that does not fit the model. Loss aversion then kicks in and management start taking more risk to win back that which was lost, just as Admati and Hellwig argue.

However, once you have achieved a position that is unquestionably strong, holding more common equity does not necessarily enhance risk management discipline. My experience in banking is that it may in fact be more likely to breed an undesirable sense of complacency or even to create pressure to improve returns. I know that the later is not a a winning strategy in the long run but in the short run the market frequently does not care.

What is the minimum return an equity investor requires?

One of the problems I find with a simplistic application of Modigliani & Miller’s (M&M) capital irrelevancy argument is that it does not seem to consider if there is a minimum threshold return for an equity investment below which the investment is no longer sufficiently attractive to investors who are being asked to take first loss positions in a company; i.e. where is the line between debt and equity where a return is simply not high enough to be attractive to equity investors?

Reframing the question in this way suggests that the debate between the authors and the bankers may be more about whether risk based capital adequacy models (including stress testing) can be trusted than it is about the limitations of M&M in the real world.

Summary

The author’s solution to prudential supervision of banks is a shock and awe approach to capital that seeks to make the risk of insolvency de minimus for good banks and bad. I have done my best to be open to their arguments and indeed do agree with a number of them. My primary concern with the path they advocate is that I do not believe the extra “skin in the game” generates the risk management benefits they claim.

I see more potential in pursuing a capital structure based on

  • a level of common equity that is robustly calibrated to the needs of a well managed (and well supervised) bank
  • incorporating a well designed counter cyclical capital buffer,
  • supplemented with another robust layer of bail-in capital that imposes real costs (and accountability) on the shareholders and management of banks for whom this level of common equity proves insufficent.

The authors argue that the authorities would never use these bail-in powers for fear of further destabilising funding markets. This is a valid area of debate but I believe they conflate the risks of imposing losses on bank depositors with the kinds of risks that professional bond investors have traditionally absorbed over many centuries of banking. The golden era in which the TBTF factor shielded bank bondholders from this risk is coming to the end but this broader investment class of bond holders has dealt with defaults by all kinds of borrowers. I am not sure why banks would be special in this regard if countries can default. The key issue is that the investors enter into the contract with the knowledge that they are at risk and are being paid a risk premium commensurate with the downside (which may not be that large if investors judge the banks to be well managed).

This is a complex topic so please let me know if I have missed something fundamental or have otherwise mis-represented Admati and Hellwig’s thesis. In the interim, I remain mostly unconvinced …

Tony

  1. It is worth noting that NZ has adopted a different path with respect to deposit protection, rejecting both deposit preference and deposit insurance. They also have a unique policy tool (Open Bank Resolution) that allows the RBNZ to impose losses on deposits as part of the resolution process. They are reviewing the case for deposit insurance and I believe should also reconsider deposit preference.

How much capital is enough? – The NZ perspective

The RBNZ has delivered the 4th instalment in a Capital Review process that was initiated in March 2017 and has a way to run yet. The latest consultation paper addresses the question “How much capital is enough?”.  The banking industry has until 29 March 2019 to respond with their views but the RBNZ proposed answer is:

  • A Tier 1 capital requirement of 16% of RWA for systemically important banks and 15% of RWA for all other banks
  • The Tier 1 minimum requirement to remain unchanged at 6% (with AT1 capital continuing to be eligible to contribute a maximum of 1.5 percentage points)
  • The proposed increased capital requirement to be implemented via an overall prudential capital buffer of 9-10% of RWA comprised entirely of CET1 capital;
    • Capital Conservation Buffer 7.5% (currently 2.5%)
    • D-SIB Buffer 1.0% (no change)
    • Counter-cyclical buffer 1.5% (currently 0%)

The increase in the capital ratio requirement is proposed to be supplemented with a series of initiatives that will increase the RWA of IRB banks:

  • The RBNZ proposes to 1) remove the option to apply IRB RW to sovereign and bank exposures,  2) increase the IRB scalar (from 1.06 to 1.20) and 3) to introduce an output floor set at 85% of the Standardised RWA on an aggregate portfolio basis
  • As at March 2018, RWA’s produced by the IRB approach averaged 76% of the Standardised Approach and the RBNZ estimate that the overall impact will be to increase the aggregate RWA to 90% of the outcome generated by the Standardised approach (i.e. the IRB changes, not the output floor, drive the increase in RWA)
  • Aggregate RWA across the four IRB banks therefore increases by approximately 16%, or $39bn, compared to March 2018 but the exact impact will depend on how IRB banks respond to the higher capital requirements

The RBNZ has also posed the question whether a Tier 2 capital requirement continues to be relevant given the substantial increase in Tier 1 capital.

Some preliminary thoughts …

There is a lot to unpack in this paper so this post will only scratch the surface of the issues it raises …

  • The overall number that the RBNZ proposes (16%) is not surprising.It looks to be at the lower end of what other prudential regulators are proposing in nominal terms
  • But is in the same ball park once you allow for the substantial increase in IRB RWA and the fact that it is pretty much entirely CET1 capital
  • What is really interesting is the fundamentally different approach that the RBNZ has adopted to Tier 2 capital and bail-in versus what APRA (and arguably the rest of the world) has adopted
    • The RBNZ proposal that the increased capital requirement take the form of CET1 capital reflects its belief that “contingent convertible instruments” should be excluded from what counts as capital
    • Exactly why the RBNZ has adopted this position is a complex post in itself (their paper on the topic can be found here) but the short version (as I understand it) is that they think bail-in capital instruments triggered by non-viability are too complex and probably won’t work anyway.
    • Their suggestion that Tier 2 probably does not have a role in the capital structure they have proposed is logical if you accept their premise that Point of Non-Viability (PONV) triggers and bail-in do not work.
  • The RBNZ highlight a significantly enhanced role for prudential capital buffersI am generally in favour of bigger, more dynamic, capital buffers rather than higher fixed minimum requirements and I have argued previously in favour of the base rate for the counter-cyclical being a positive value (the RBNZ propose 1.5%)
    • But the overall size of the total CET1 capital buffer requirement requires some more considered thought about 1) the role of bail-in  structures and PONV triggers in the capital regulation toolkit (as noted above) and 2) whether the impacts of the higher common equity requirement will be as benign as the RBNZ analysis suggests
  • I am also not sure that the indicative capital conservation responses they have outlined (i.e. discretionary distributions limited to 60% of net earnings in the first 250bp of the buffer, falling to 30% in the next 250bp and no distributions thereafter) make sense in practice.
    • This is because I doubt there will be any net earnings to distribute if losses are sufficient to reduce CET1 capital by 250bp so the increasing capital conservation requirement is irrelevant.
  • Last, but possibly most importantly, we need to consider the impact on the Australian parents of the NZ D-SIB banks and how APRA responds. The increase in CET1 capital proposed for the NZ subsidiaries implies that, for any given amount of CET1 capital held by the Level 2 Banking Group, the increased strength of the NZ subsidiaries will be achieved at the expense of the Australian banking entities
    • Note however that the impact of the higher capital requirement in NZ will tend to be masked by the technicalities of how bank capital ratios are calculated.
      • It probably won’t impact the Level 2 capital ratios at all since these are a consolidated view of the combined banking group operations of the Group as a whole
      • The Level 1 capital ratios for the Australian banks also treat investments in bank subsidiaries relatively generously (capital invested in unlisted subsidiaries is treated as a 400% risk weighted asset rather than a capital deduction).

Conclusion

Overall, I believe that the RBNZ is well within its rights to expect the banks it supervises to maintain a total level of loss absorbing capital of 16% or more. The enhanced role for capital buffers is also a welcome move.

The issue is whether relying almost entirely on CET1 capital is the right way to achieve this objective. This is however an issue that has been debated for many decades with no clear resolution. It will take some time to fully unpack the RBNZ argument and figure out how best to articulate why I disagree. In the interim, any feedback on the issues I have outlined above would be most welcome.

Tony

Loss absorption under bail-in

I recently did a post on a Discussion Paper setting out how APRA proposes to increase the Loss Absorption Capital (LAC) of Australian authorised deposit-taking institutions (ADIs). I came down on the side of this being a desirable (arguably necessary) enhancement of the Australian financial system but noted that the devil was in the detail. One of the issues discussed was the potential impact of the proposal on the statutory and contractual loss hierarchy that defines the sequence in which losses are absorbed by the capital of the bank in the first instance, and by more senior sources of funding in need.  

This post attempts to dig a bit deeper into this question to better understand how losses would be assigned under a bail-in scenario. It is a pretty technical point and possibly of limited interest but I wanted to make sure I had a good handle on how loss absorption plays out in the future. Read on or stop here.

Key points

  • The bail-in of selected, pre-positioned liabilities modifies the traditional loss hierarchy that applies in a liquidation scenario 
    • As a general rule, the absorption of losses is accelerated across all tiers of LAC
    • CET1 investors bear the loss via the dilution of their shareholdings as AT1 and Tier 2 are converted to common equity
    • AT1 investors risk not receiving distributions but otherwise the loss hierarchy between them and T2 investors seems to collapse once their holdings are converted into CET1
    • The only potential advantage to Tier 2 in these scenarios is that these instruments may only face partial conversion but how beneficial depends on the extent to which conversion to common equity offers a better chance to liquidate their holding versus selling the Tier 2 instrument itself into what is likely to be a very illiquid market
  • This has been increasingly true since APRA introduced Point of Non-Viability (PONV) conversion triggers in 2013, and the instruments without this contractual feature progressively matured, but the proposed expansion of the pool of LAC takes us further down this path:
    • partly by virtue of making it easier for APRA to restructure bank capital structures without recourse to taxpayer support (i.e. the odds of bail-in being used in a future crisis are increased if the tool itself is more effective); and
    • partly by increasing the quantum of CET1 dilution that is the mechanism by which losses are allocated to the various tiers of LAC
  • Investors in the various capital tiers will obviously adjust the return they require for the risks they are asked to bear but we should ensure we all have a clear and consistent understanding of how the loss hierarchy is modified, and whether the resulting loss hierarchy is desirable (or indeed equitable)
  • The answer to this question turns in part on whether the outcomes for AT1 and T2 investors are better or worse than the market value they could achieve if they sold their investments prior to bail-in 

Loss Hierarchy – the simple version

Prudential Standard APS 111 (Capital Adequacy: Measurement of Capital) defines the order of seniority amongst the three tiers of prudential capital:

  • CET1 Capital “… rank behind the claims of depositors and other more senior creditors in the event of a winding up of the issuer ” (Para 19 (d))
  • AT1 Capital “… rank behind the claims of depositors and other more senior creditors in the event of a winding up of the issuer” (Para 28 (c))
  • Tier 2 Capital “represents, prior to any conversion to Common Equity Tier 1 … the most subordinated claim in liquidation of the issuer after Common Equity Tier 1 Capital instruments and Additional Tier 1 Capital instruments (Attachment H, Para 1 (b))

APS 111 (Attachment F, Para 10) also explicitly allows AT1 instruments to 1) differentiate as to whether the instrument is required to convert or be written-off in the first instance, and 2) provide for a ranking under which individual AT1 instruments will be converted or written-off. The guidance on Tier 2 is less explicit on this point but there does not seem to be any fundamental reason why a bank could not introduce a similar ranking within the overall level of subordination. I am not aware of any issuer using this feature for either AT1 or T2.

If we ignore for a moment the impact of bail-in (either by conversion or write-off), the order in which losses are applied to the various sources of funding employed by a company follows this loss hierarchy:

  • Going Concern:
    • Common Equity Tier 1 (CET1)
    • Additional Tier 1 (AT1)
  • Insolvency – Liquidation or restructuring:
    • Tier 2 (T2)
    • Senior unsecured
    • Super senior
      • Covered bonds
      • Deposits
      • Insured deposits

CET1 is clearly on the front line of loss absorption (a perpetual commitment of funding with any returns subject to the issuer having profits to distribute and the Capital Conservation Ratio (CCR) not being a constraint). AT1 is subject to similar restrictions, though its relative seniority does offer some protection regarding the payment of regular distributions.

Traditionally, the claims the other forms of funding have on the issuer are only at risk in the event of the liquidation or restructuring of the company but bail-in modifies this traditional loss hierarchy.

What happens to the loss hierarchy under bail in?

First up, let’s define bail-in …

A bail-in is the rescue of a financial institution that is on the brink of failure whereby creditors and depositors take a loss on their holdings. A bail-in is the opposite of a bailout, which involves the rescue of a financial institution by external parties, typically governments that use taxpayers money.” (Investopedia)

Investopedia’s definition above is useful, albeit somewhat generic. Never say never, but the loss hierarchy employed in Australia, combined with the fact that there are substantial layers of more junior creditors for big banks in particular, means that most Australian depositors (even the ones that do not have the benefit of deposit insurance) are pretty well insulated from bail-in risk. Not everyone would share my sanguine view on this question (i.e. the limited extent to which deposits might be bailed in) and some countries (NZ for example) quite explicitly choose to forego deposit insurance and move deposits up the loss hierarchy by ranking them equally with senior unsecured creditors.

The main point of bail-in is that existing funding is used to recapitalise the bank, as opposed to relying on an injection of new capital from outside which may or may not be forthcoming. It follows that pre-positioning sufficient layers of loss absorption, and making sure that investors understand what they have signed up for, is critical.

AT1 has always been exposed to the risk of its distributions being cut. This sounds good in theory for loss absorption but the size of these potential capital outflows is relatively immaterial in any real stress scenario. It could be argued that every dollar helps but my view is that the complexity and uncertainty introduced by making these distributions subject to the Capital Conservation Ratio (CCR) outweigh any contribution they might make to recapitalising the bank. The people who best understand this point are those who have had to calculate the CCR in a stress scenario (you have to get into the detail to understand it). The CCR issue could be addressed by simplifying the way it is calculated and I would argue that simplicity is always a desirable feature of any calculation that has to be employed under conditions of stress and uncertainty. The main point however is that it does very little to help recapitalise the bank because the heavy lifting in any really severe stress scenario depends on the capacity to convert a pool of pre-positioned, contingent capital into CET1.

APRA has had explicit power to bail-in AT1 and T2 since the January 2013 version of APS 111 introduced Point of Non-Viability (PONV) conversion triggers – these enhanced powers do a few things:

  • The impact of losses is brought forward relative what would apply in a conventional liquidation or restructuring process
  • For CET1 investors, this accelerated impact is delivered via the dilution of their shareholdings (and associated share price losses)
  • In theory, conversion shields the AT1 investors from loss absorption because they receive common equity equivalent in value to the book value of their claim on the issuer
  • In practice, it is less clear that the AT1 investors will be able to sell the shares at the conversion price or better, especially if market liquidity is adversely impacted by the events that called the viability of the issuer into question
  • The conversion challenge will be even greater to the extent that T2 investors are also bailed-in and seek to sell the shares they receive

Tier 2 will only be bailed-in after AT1 bail-in has been exhausted, as would be expected given its seniority in the loss hierarchy, but it is hard to see a bail-in scenario playing out where the conversion of AT1 alone is sufficient to restore the viability of the bank. AT1 is likely to represent not much more than the 1.5 percentage points of RWA required to meet minimum requirements but any crisis sufficient to threaten the viability of a bank is likely to require a much larger recapitalisation so full or partial conversion of T2 should be expected.

Partial conversion 

Attachment J – Para 6 provides that “Conversion or write-off need only occur to the extent necessary to enable APRA to conclude that the ADI is viable without further conversion or write-off”. Para 8 of the same attachment also specifies that “An ADI may provide for Additional Tier 1 Capital instruments to be converted or written off prior to any conversion or write-off of Tier 2 Capital instruments”.

This makes it reasonably clear that APRA will not automatically require all AT1 and Tier 2 to be converted or written-off but the basis on which partial conversion would be applied is not covered in the discussion paper. A pro-rata approach (i.e. work out how much of the aggregate Tier 2 is required to be converted and then apply this ratio to each  individual instrument) seems the simplest option and least open to legal challenge but it may be worth considering alternatives.

Converting the Tier 2 instruments closest to maturity in particular seems to offer some advantages over the pro rata approach

  • It generates more CET1 capital than the Tier 2 foregone (because the Tier 2 capital value of an instrument is amortised in its final 5 years to maturity whereas the CET1 capital created by bail-in is the full face value off the instrument)
  • It defers the need to replace maturing Tier 2 capital and maximises the residual pool of LAC post bail-in.

What is the reason for the 20% floor that APS 111 imposes on the conversion price?

The transition to a bail-in regime may be an opportune time to revisit the rationale for placing a floor on the conversion price used to convert AT1 and Tier 2 into common equity. Attachments E and F contain an identically worded paragraph 8 that requires that the share price used to calculate the shares received on conversion cannot be less than 20% of the ordinary share price at the the time the LAC instrument was issued. This floor arguably requires the share price to fall a long way before it has any effect but it is not clear what purpose is served by placing any limit on the extent to which common equity shareholders might see their holdings diluted in a non-viability scenario.

Bail-in via write-off of AT1 or T2

I am concentrating on bail-in via conversion because that seems to be the default loss absorption contemplated by APS 111 and the one that is most consistent with the traditional loss hierarchy. LAC instruments can be designed with write-off as the primary loss absorption mechanism but it is not clear that any issuer would ever choose to go down that path as it would likely be more expensive versus bail-in via conversion. The write-off option seems to have been included as a failsafe in the event that conversion is not possible for whatever reason.

Conclusion

The loss absorption hierarchy under a bail-in based capital regime is a bit more complicated than the simple, progressive three tier hierarchy that would apply in a traditional liquidation scenario. I believe however that this added complexity is justified both by the enhanced level of financial safety and by the extent to which it addresses the advantage big banks have previously enjoyed by virtue of being Too Big To Fail.

The main concern is that AT1 and Tier 2 investors who underwrite the pre-positioning of this contingent source of new CET1 capital properly understand the risks. I must confess that I had to think it through and remain open to the possibility that I have missed something … if so tell me what I am missing.

Tony

 

Does more loss absorption and “orderly resolution” eliminate the TBTF subsidy?

The Australian Government’s 2014 Financial System Inquiry (FSI) recommended that APRA implement a framework for minimum loss-absorbing and recapitalisation capacity in line with emerging international practice, sufficient to facilitate the orderly resolution of Australian authorised deposit-taking institutions (ADIs) and minimise taxpayer support (Recommendation 3).

In early November, APRA released a discussion paper titled “Increasing the loss absorption capacity of ADIs to support orderly resolution” setting out its response to this recommendation. The paper proposes that selected Australian banks be required to hold more loss absorbing capital. Domestic Systemically Important Banks (DSIBs) are the primary target but, depending partially on how their Recovery and Resolution Planning addresses the concerns APRA has flagged, some other banks will be captured as well.

The primary objectives are to improve financial safety and stability but APRA’s assessment is that competition would also be “Marginally improved” on the basis that “requiring larger ADIs to maintain additional loss absorbency may help mitigate potential funding advantages that flow to larger ADIs“. This assessment may be shaped by the relatively modest impact (5bp) on aggregate funding costs that APRA has estimated or simple regulatory conservatism. I suspect however that APRA is under selling the extent to which the TBTF advantage would be mitigated if not completely eliminated by the added layer of loss absorption proposed. If I am correct, then this proposal would in fact, not only minimise the risk to taxpayers of future banking crises, but also represent an important step forward in placing Australian ADIs on a more level playing field.

Why does the banking system need more loss absorption capacity?

APRA offers two reasons:

  1. The critical role financial institutions play in the economy means that they cannot be allowed to fail in a disorderly manner that would have adverse systemic consequences for the economy as a whole.
  2. The government should not be placed in a position where it believes it has no option but to bail out one or more banks

The need for extra capital might seem counter-intuitive, given that ADI’s are already “unquestionably strong”, but being unquestionably strong is not just about capital, the unstated assumption is that the balance sheet and business model are also sound. The examples that APRA has used to calibrate the degree of total loss absorption capacity could be argued to reflect scenarios in which failures of management and/or regulation have resulted in losses much higher than would be expected in a well-managed banking system dealing with the normal ups and downs of the business cycle.

At the risk of over simplifying, we might think of the first layers of the capital stack (primarily CET1 capital but also Additional Tier 1) being calibrated to the needs of a “good bank” (i.e. well-managed, well-regulated) while the more senior components (Tier 2 capital) represent a reserve to absorb the risk that the good bank turns out to be a “bad bank”.

What form will this extra capital take?

APRA concludes that ADI’s should be required to hold “private resources” to cope with this contingency. I doubt that conclusion would be contentious but the issue is the form this self-insurance should take. APRA proposes that the additional loss absorption requirement be implemented via an increase in the minimum Prudential Capital Requirement (PCR) applied to the Total Capital Ratio (TCR) that Authorised Deposit-Taking Institutions (ADIs) are required to maintain under Para 23 of APS 110.

“The minimum PCRs that an ADI must maintain at all times are:
(a) a Common Equity Tier 1 Capital ratio of 4.5 per cent;
(b) a Tier 1 Capital ratio of 6.0 per cent; and
(c) a Total Capital ratio of 8.0 per cent.
APRA may determine higher PCRs for an ADI and may change an ADI’s PCRs at any time.”

APS 110 Paragraph 23

This means that banks have discretion over what form of capital they use, but APRA expect that banks will use Tier 2 capital that counts towards the Total Capital Ratio as the lowest cost way to meet the requirement. Advocates of the capital structure irrelevance thesis would likely take issue with this part of the proposal. I believe APRA is making the right call (broadly speaking) in supporting more Tier 2 rather than more CET1 capital, but the pros and cons of this debate are a whole post in themselves. The views of both sides are also pretty entrenched so I doubt I will contribute much to that 50 year old debate in this post.

How much extra loss absorbing capital is required?

APRA looked at three things when calibrating the size of the additional capital requirement

  • Losses experienced in past failures of systemically important banks
  • What formal requirements other jurisdictions have applied to their banks
  • The levels of total loss absorption observed being held in an international peer group (i.e. what banks choose to hold independent of prudential minimums)

Based on these inputs, APRA concluded that requiring DSIBs to maintain additional loss absorbing capital of between 4-5 percentage points of RWA would be an appropriate baseline setting to support orderly resolution outcomes. The calibration will be finalised following the conclusion of the consultation on the discussion paper but this baseline requirement looks sufficient to me based on what I learned from being involved in stress testing (for a large Australian bank).

Is more loss absorption a good idea?

The short answer, I think, is yes. The government needs a robust way to recapitalise banks which does not involve risk to the taxpayer and the only real alternative is to require banks to hold more common equity.

The devil, however, is in the detail. There are a number of practical hurdles to consider in making it operational and these really need to be figured out (to the best of out ability) before the fact rather than being made up on the fly under crisis conditions.  The proposal also indirectly raises some conceptual issues with capital structure that are worth understanding.

How would it work in practice?

The discussion paper sets out “A hypothetical outcome from resolution action” to explain how an orderly resolution could play out.

“The approximate capital levels the D-SIBs would be expected to maintain following an increase to Total Capital requirements, and a potential outcome following the use of the additional loss absorbency in resolution, are presented in Figure 6. Ultimately, the outcome would depend on the extent of losses.

If the stress event involved losses consistent with the largest of the FSB study (see Figure 2), AT1 and Tier 2 capital instruments would be converted to ordinary shares or written off. After losses have been considered, the remaining capital position would be wholly comprised of CET1 capital. This conversion mechanism is designed to allow for the ADI to be stabilised in resolution and provide scope to continue to operate, and particularly to continue to provide critical functions.”

IMG_5866.JPG

Source – APRA Discussion Paper (page 24)

What I have set out below draws from APRA’s example while adding detail that hopefully adds some clarity on what should be expected if these scenarios ever play out.

  • In a stress event, losses first impact any surplus CET1 held in excess of the Capital Conservation Buffer (CCB) requirement, and then the CCB itself (the first two layers of loss absorption in Figure 6 above)
  • As the CCB is used up, the ADI is subject to progressive constraints on discretionary distributions on CET1 and AT1 capital instruments
  • In the normal course of events, the CCB should be sufficient to cope with most stresses and the buffer is progressively rebuilt through profit retention and through new issuance, if the ADI wants to accelerate the pace of the recapitalisation process
  • The Unquestionably Strong capital established to date is designed to be sufficient to allow ADIs to withstand quite severe expected cyclical losses (as evidenced by the kinds of severe recession stress scenarios typically used to calibrate capital buffers)
  • In more extreme scenarios, however, the CCB is overwhelmed by the scale of losses and APRA starts to think about whether the ADI has reached a Point of Non-Viability (PONV) where ADI’s find themselves unable to fund themselves or to raise new equity; this is where the proposals in the Discussion Paper come into play
  • The discussion paper does not consider why such extreme events might occur but I have suggested above that one reason is that the scale of losses reflects endogenous weakness in the ADI (i.e. failures of risk management, financial control, business strategy) which compound the losses that would be a normal consequence of downturns in the business cycle
  • APRA requires that AT1 capital instruments, classified as liabilities under Australian Accounting Standards, must include a provision for conversion into ordinary shares or write off when the CET1 capital ratio falls to, or below 5.125 per cent
  • In addition, AT1 and Tier 2 capital instruments must contain a provision, triggered on the occurrence of a non-viability trigger event, to immediately convert to ordinary shares or be written off
  • APRA’s simple example show both AT1 and Tier 2 being converted to CET1 (or write-off) such that the Post Resolution capital structure is composed entirely of CET1 capital

Note that conversion of the AT1 and Tier 2 instruments does not in itself allocate losses to these instruments. The holders receive common equity equivalent to the book value of their instrument which they can sell or hold. The ordinary shareholders effectively bear the loss via the forced dilution of their shareholdings. The main risk to the ATI and Tier 2 holders is that, when they sell the ordinary shares received on conversion, they may not get the same price that which was used to convert their instrument. APRA also imposes a floor on the share price that is used for conversion which may mean that the value of ordinary shares received is less than the face value of the instrument being converted. The reason why ordinary shareholders should be protected in this way under a resolution scenario is not clear.

The devil is in the detail – A short (probably incomplete) list of issues I see with the proposal:

  1. Market capacity to supply the required quantum of additional Tier 2 capital required
  2. Conversion versus write-off
  3. The impact of conversion on the “loss hierarchy”
  4. Why not just issue more common equity?
  5. To what extent would the public sector continue to stand behind the banking system once the proposed level of self insurance is in place?

Market capacity to supply the required level of additional loss absorption

APRA has requested industry feedback on whether market appetite for Tier 2 capital will be a problem but its preliminary assessment is that:

” … individual ADIs and the industry will have the capacity to implement the changes necessary to comply with the proposals without resulting in unnecessary cost for ADIs or the broader financial system.

Preliminary estimates suggest the total funding cost impact from increasing the D-SIBs’Total Capital requirements would not be greater than five basis points in aggregate based on current spreads. Assuming the D-SIBs meet the increased requirement by increasing the issuance of Tier 2 capital instruments and reducing the issuance of senior unsecured debt, the impact is estimated by observing the relative pricing of the different instruments. The spread difference between senior unsecured debt and Tier 2 capital instruments issued by D- SIBs is around 90 to 140 basis points.”

I have no expert insights on this question beyond a gut feel that the required level of Tier 2 capital cannot be raised without impacting the current spread between Tier 2 capital and senior debt, if at all. The best (only?) commentary I have seen to date is by Chris Joye writing in the AFR (see here and here). The key points I took from his opinion pieces are:

  • The extra capital requirement translates to $60-$80 billion of extra bonds over the next four years (on top of rolling over existing maturities)
  • There is no way the major banks can achieve this volume
  • Issuing a new class of higher ranking (Tier 3) bonds is one option, though APRA also retains the option of scaling back the additional Tier 2 requirement and relying on its existing ability to bail-in senior debt

Chris Joye know a lot more about the debt markets than I do, but I don’t think relying on the ability to bail-in senior debt really works. The Discussion Paper refers to APRA’s intention that the “… proposed approach is … designed with the distinctive features of the Australian financial system in mind, recognising the role of the banking system in channelling foreign savings into the economy “ (Page 4). I may be reading too much into the tea leaves, but this could be interpreted as a reference to the desirability of designing a loss absorbing solution which does not adversely impact the senior debt rating that helps anchor the ability of the large banks to borrow foreign savings. My rationale is that the senior debt rating impacts, not only the cost of borrowing, but also the volume of money that foreign savers are willing to entrust with the Australian banking system and APRA specifically cites this factor as shaping their thinking. Although not explicitly stated, it seems to me that APRA is trying to engineer a solution in which the D-SIBs retain the capacity to raise senior funding with a “double A” rating.

Equally importantly, the creation of a new class of Tier 3 instruments seems like a very workable alternative to senior bail-in that would allow the increased loss absorption target to be achieved without impacting the senior debt rating. This will be a key issue to monitor when ADI’s lodge their response to the discussion paper. It also seems likely that the incremental cost of the proposal on overall ADI borrowing costs will be higher than the 5bp that APRA included in the discussion paper. That is not a problem in itself to the extent this reflects the true cost of self insurance against the risk of failure, just something to note when considering the proposal.

Conversion versus write-off

APRA has the power to effect increased loss absorption in two ways. One is to convert the more senior elements of the capital stack into common equity but APRA also has the power to write these instruments off. Writing off AT1 and/or T2 capital, effectively represents a transfer of value from the holders of these instruments to ordinary shareholders. That is hard to reconcile with the traditional loss hierarchy that sees common equity take all first losses, with each of the more senior tranches progressively stepping up as the capacity of more junior tranches is exhausted.

Consequently I assume that the default option would always favour conversion over write-off. The only place that I can find any guidance on this question is Attachment J to APS 111 (Capital Adequacy) which states

Para 11. “Where, following a trigger event, conversion of a capital instrument:

(a)  is not capable of being undertaken;

(b)  is not irrevocable; or

(c) will not result in an immediate and unequivocal increase in Common Equity Tier 1 Capital of the ADI,

the amount of the instrument must immediately and irrevocably be written off in the accounts of the ADI and result in an unequivocal addition to Common Equity Tier 1 Capital.”

That seems to offer AT1 and Tier 2 holders comfort that they won’t be asked to take losses ahead of common shareholders but the drafting of the prudential standard could be clearer if there are other reasons why APRA believe a write-off might be the better resolution strategy. The holders need to understand the risks they are underwriting but ambiguity and uncertainty are to helpful when the banking system is in, or a risk of, a crisis.

The impact of conversion on the “loss hierarchy”

The concept of a loss hierarchy describes the sequence under which losses are first absorbed by common equity and then by Additional Tier 1 and Tier 2 capital, if the more junior elements prove insufficient. Understanding the loss hierarchy is I think fundamental to understanding capital structure in general and this proposal in particular:

  • In a traditional liquidation process, the more senior elements should only absorb loss when the junior components of the capital stack are exhausted
  • In practice, post Basel III, the more senior elements will be required to participate in recapitalising the bank even though there is still some book equity and the ADI technically solvent (though not necessarily liquid)
  • This is partly because the distributions on AT1 instruments are subject to progressively higher capital conservation restrictions as the CCB shrinks but mostly because of the potential for conversion to common equity (I will ignore the write-off option to keep things simple)

I recognise that APRA probably tried to simplify this explanation but the graphic example they used (see Figure 6 above) to explain the process shows the Capital Surplus and the CCB (both CET1 capital) sitting on top of the capital stack followed by Tier 2, Additional Tier 1 and finally the minimum CET1 capital. The figure below sets out what I think is a more logical illustration of the capital stack and loss .

IMG_2739

Losses initially impact CET1 directly by reducing net tangible assets per share. At the point of a non-viability based conversion event, the losses impact ordinary shareholders via the dilution of their shareholding. AT1 and Tier 2 holders only share in these losses to the extent that they sell the ordinary shares they receive for less than the conversion price (or if the conversion price floor results in them receiving less than the book value of their holding).

Why not just issue more common equity?

Capital irrelevancy M&M purists will no doubt roll their eyes and say surely APRA knows that the overall cost of equity is not impacted by capital structure tricks. The theory being that any saving in the cost of using lower cost instruments, will be offset by increases in the costs (or required return) of more subordinated capital instruments (including equity).

So this school argues you should just hold more CET1 and the cost of the more senior instruments will decline. The practical problem I think is that, the cost of senior debt already reflects the value of the implied support of being too big, or otherwise systemically important, to be allowed to fail. The risk that deposits might be exposed to loss is even more remote partly due to deposit insurance but, possibly more importantly, because they are deeply insulated from risk by the substantial layers of equity and junior ranking liabilities that must be exhausted before assets are insufficient to cover deposit liabilities.

To what extent would the public sector continue to stand behind the banking system once the proposed level of self insurance is in place?

Assuming the market capacity constraint question could be addressed (which I think it can), the solution that APRA has proposed seems to me to give the official family much greater options for dealing with future banking crises without having to call on the taxpayer to underwrite the risk of recapitalising failed or otherwise non-viable banks.

It does not, however, eliminate the need for liquidity support. I know some people argue that this is a distinction without a difference but I disagree. The reality is that banking systems built on mostly illiquid assets will likely face future crises of confidence where the support of the central bank will be necessary to keep the financial wheels of the economy turning.

There are alternative ways to construct a banking system. Mervyn King, for example, has advocated a version of the Chicago Plan under which all bank deposits must be 100% backed by liquid reserves that would be limited to safe assets such as government securities or reserves held with the central bank. Until we decide to go down that path, or something similar, the current system requires the central bank to be the lender of last resort. That support is extremely valuable and is another design feature that sets banks apart from other companies. It is not the same however, as bailing out a bank via a recapitalisation.

Conclusion

I have been sitting on this post for a few weeks while trying to consider the pros and cons. As always, the risk remains that I am missing something. That said, this looks to me like a necessary (and I would argue desirable) enhancement to the Australian financial system that not only underpins its safety and stability but also takes us much closer to a level playing field. Big banks will always have the advantage of sophistication, scale and efficiency that comes with size but any funding cost advantage associated with being too big to fail now looks to be priced into the cost of the additional layers of loss absorption this proposal would require them to put in place.

Tony

Will Expected Loss loan provisioning reduce pro cyclicality?

I may not always agree with everything they have to say, but there are a few people who reliably produce content and ideas worth reading, Andy Haldane is one and Claudio Borio is another (see previous posts on Haldane here and Borio here for examples of their work). So I was interested to read what Borio had  to say about the introduction of Expected Credit Loss (ECL) provisioning. ECL is one of those topic that only interests the die-hard bank capital and credit tragics but I believe it has the potential to create some problems in the real world some way down the track.

Borio’s position is that:

  • Relative to the “incurred loss” approach to credit risk that precedes it, the new standard is likely to mitigate pro cyclicality to some extent;
  • But it will not be sufficient on its own to eliminate the risk of adverse pro cyclical impacts on the real economy;
  • So there is a need to develop what he calls “capital filters” (a generic term encompassing   capital buffers and other tools that help mitigate the risk of pro cyclicality) that will work in conjunction with, and complement, the operation of the loan loss provisions in managing credit risk.

There are two ways to respond to Claudio Borio’s observations on this topic:

  1. One is to take issue with his view that Expected Credit Loss provisioning will do anything at all to mitigate pro cyclicality;
  2. The second is to focus on his conclusion that ECL provisioning by itself is not enough and that a truly resilient financial system requires an approach that complements loan provisions

Will ECL reduce the risk of pro cyclicality?

It is true that, relative to the incurred loss model, the ECL approach will allow loan loss provisions to be put in place sooner (all other things being equal). In scenarios where banks have a good handle on deteriorating economic conditions, then it does gives more freedom to increase provisions without the constraint of this being seen to be a cynical device to “smooth” profits.

The problem I see in this assessment is that the real problems with the adequacy of loan provisioning occur when banks (and markets) are surprised by the speed, severity and duration of an economic downturn. In these scenarios, the banks may well have more ECL provisions than they would otherwise have had, but they will probably still be under provisioned.

This will be accentuated to the extent that the severity of the downturn is compounded by any systematic weakness in the quality of loans originated by the banks (or other risk management failures) because bank management will probably be blind to these failures and hence slow to respond. I don’t think any form of Expected Loss can deal with this because we have moved from expected loss to the domain of uncertainty.

The solution to pro cyclicality lies in capital not expected loss

So the real issue is what to do about that. Borio argues that, ECL helps, but you really need to address the problem via what he refers to as “capital filters” (what we might label as counter cyclical capital buffers though that term is tainted by the failure of the existing system to do much of practical value thus far). On this part of his assessment, I find myself in violent agreement with him:

  • let accounting standards do what they do, don’t try to make them solve prudential problems;
  • construct a capital adequacy solution that complements the accounting based measurement of capital and profits.

Borio does not offer any detail on exactly what these capital solutions might look like, but the Bank of England and the OFSI are working on two options that I think are definitely worth considering.

In the interim, the main takeaway for me is that ECL alone is not enough on its own to address the problem of pro cyclicality and, more importantly, it is dangerous to think it can.

Tony

Mortgage risk weights – fact check

It is frequently asserted that the major Australian banks have been “gifted” a substantially lower mortgage risk weight than the smaller banks. To be precise, the assertion is that the major banks are only required to hold capital based on a 25% risk weight versus 39% for smaller banks.

If you are not familiar with the arcane detail of bank capital adequacy, then you could be forgiven for concluding that this differential (small banks apparently required to hold 56% more capital for the same risk) is outrageous and unfair. While the risk weights for big banks are certainly lower on average than those required of small banks, I believe the difference in capital requirements is not as large as the simple comparison of risk weights suggests.

Bank capital requirements involve more than risk weights

To understand why this comparison of risk weights is misleading, it will be helpful to start with a quick primer on bank capital requirements. The topic can be hugely complex but, reduced to its essence, there are three elements that drive the amount of capital a bank holds:

  1. The risk weights applied to its assets
  2. The target capital ratio applied to those risk weighted assets
  3. Any capital deductions required when calculating the capital ratio

Problem 1 – Capital adequacy ratios differ

The comparison of capital requirements based on risk weights implicitly assumes that the regulator applies the same capital ratio requirement to all banks, but this is not the case. Big banks are targeting CET1 ratios based on the 10.5% Unquestionably Strong benchmark set by APRA while there is a greater range of practice amongst the smaller banks. Bendigo and Suncorp appear to be targeting a CET1 ratio in the range of 8.5 to 9.0% while the smaller of the small banks appear to be targeting CET1 ratios materially higher (say 15% or more).

If we confine the comparison to the alleged disadvantage suffered by Bendigo and Suncorp, then the higher risk weights they are required to apply to residential mortgages is substantially offset by the lower CET1 target ratios that they target (the 56% difference in capital required shrinks to something in the order of 30% if you adjust for the difference in target CET1 ratios).

Broadening the comparison to the smaller banks gets even more interesting. At face value the much higher CET1 ratios they appear to target suggest that they are doubly penalised in the required capital comparison but you have to ask why are they targeting such high CET1 ratios. One possible explanation is that the small less diversified mortgage exposures are in fact more risky than the more diversified exposures maintained by their larger competitors.

Problem 2 – You have to include capital deductions

This is quite technical I recognise but, in addition to the capital tied to the risk weight, the big banks are also required to hold capital for a capital deduction linked to the difference between their loan loss provisions and a regulatory capital value called “Regulatory Expected Loss”. This capital deduction increases the effective risk weight. The exact amount varies from bank to bank but I believe it increases the effective capital requirement by 10-12% (I.e. an effective RW closer to 28%). My understanding is that small banks are not required to make the same capital deduction.

Problem 3 – The Standardised risk weights for residential mortgages seem set to change

A complete discussion of the RW difference should also take account of the fact that APRA has proposed to introduce lower RW Categories for the smaller banks such their average RW may be lower than 39% in the future. I don’t know what the average RW for small banks would be under these new RW but that is a question you could put to the banks who use the 39% figure without acknowledging this fact.

Problem 4 – The risk of a mortgage depends on the portfolio not the individual loan

The statement that a loan is the same risk irrespective of whether it is written by a big bank or small bank sounds intuitively logical but is not correct. The risk of a loan can only be understood when it is considered as part of the portfolio the bank holds. Small banks will typically be less diversified than a big bank.

Problem 5 – What about the capital required for Interest Rate Risk in the Banking Book (IRRBB)?

I don’t have sufficient data to assess how significant this is, but intuitively I would expect that the capital that the major banks are required to hold for IRRBB will further narrow the effective difference between the risk weights applied to residential mortgages.

Summing up

My aim in this post was not to defend the big banks but rather to try to contribute some of the knowledge I have acquired working in this area to what I think is an important but misunderstood question. In the interests of full disclosure, I have worked for one of the large Australian banks and may continue to do work for them in the future.

On a pure risk basis, it seems to me that the loan portfolio of a large bank will tend to be more diversified, and hence lower risk, than that of a smaller bank. It is not a “gift” for risk weights to reflect this.

There is a legitimate debate to be had regarding whether small banks should be given (gifted?) an advantage that helps them compete against the big banks. That debate however should start with a proper understanding of the facts about how much advantage the large banks really have and the extent to which their lower risk weights reflect lower risk.

If you disagree tell me what I am missing …

Capital adequacy – an option to add transparency and flexibility into the “Unquestionably Strong” mix

Two of my earlier posts (here and here) discussed the potential to improve the capital adequacy framework by revisiting the calibration and operation of regulatory capital buffers. Some of the issues discussed in those posts are touched on in a discussion paper APRA has released titled “Improving the transparency, comparability and flexibility of the ADI capital framework“.

APRA is open to alternatives but sets out two options for discussion

In APRA’s words, the DP outlines

“… options to modify the ADI capital framework to improve transparency and comparability of reported capital ratios. The main conceptual approaches APRA is considering and seeking feedback on are:

  • developing more consistent disclosures without modifying the underlying capital framework; and

  • modifying the capital framework by adjusting the methodology for calculating capital ratios.”

The First Approach– “Consistent disclosure” – seems to be a beefed up version of the status quo in which APRA gets more directly involved in the comparability process by adding its imprimatur to the internationally harmonised ratios some Australian banks currently choose to disclose as an additional informal measure of capital strength.

“Under this approach, ADIs would continue to determine regulatory capital ratios using APRA’s definitions of capital and RWA. However, APRA would also specify a methodology for ADIs to determine certain adjustments to capital and RWA that could be used for disclosure (Pillar 3) purposes. As noted above, the methodology would focus on aspects of relative conservatism that are material in size and able to be calculated simply and objectively.”

APRA argues that “The supplementary disclosure would allow all stakeholders to better assess the capital strength of an ADI on a more comparable basis. However, it would result in two APRA-endorsed capital ratios: an APRA regulatory capital ratio to be compared against minimum requirements, and an additional disclosure-only capital ratio for, in particular, international comparison.”

A Second Approach – “Capital ratio adjustments” would involve APRA modifying the calculation of regulatory capital ratios to utilise more internationally harmonised definitions of capital and RWA.

The DP explains that this “… alternative approach would involve APRA modifying the calculation of regulatory capital ratios to utilise more internationally harmonised definitions of capital and RWA. This would involve removing certain aspects of relative conservatism from ADIs’ capital ratio calculations and lifting minimum regulatory capital ratio requirements in tandem. This increase in regulatory capital ratio requirements could be in the form of a transparent adjustment to minimum capital ratio requirements—for the purposes of this paper, such an adjustment is termed the ‘APRA Overlay Adjustment’.”

“To maintain overall capital adequacy, the APRA Overlay Adjustment would need to be calculated such that the total dollar amount of Prudential Capital Requirement (PCR) and Capital Conservation Buffer (CCB) would be the same as that required if these measures were not adopted. In other words, the risk-based capital requirements of ADIs would be unchanged in absolute dollar terms, maintaining financial safety, but adjustments to the numerator and the denominator of the capital ratio to be more internationally comparable would increase reported capital ratios.”

APRA clarify that

“These options are not mutually exclusive, and there is potential for both approaches to be adopted and applied in different areas.”

Approach 2 has some clear advantages …

It would make the “unquestionably strong” capital ratios more directly comparable with international peers, thereby reducing the potential for the perception of this strength to be obscured or misunderstood.

“Perception” is the key word here. It matters that the strength of Australian banks is simple, transparent and evident rather than being something where the perceivers must understand a sequence of relatively obscure and complex adjustments to fully appreciate the strength of a bank’s capital. More importantly perception matters most when the system is under stress and people do not have the time, or the inclination, to look beyond the reported numbers.

The adjusted capital ratio approach also provides opportunity to increase the flexibility of the ADI capital framework in times of stress but only to the extent to which the Overlay Adjustment is applied to the capital buffer, rather than increasing the minimum capital requirements. Higher minimum requirements would do nothing to enhance flexibility and may even be a backward step.

I believe a non zero baseline for the CCyB would also enhance the flexibility of the capital framework by virtue of the fact that it improves the odds that the banks (and APRA) have a flexible buffer in place before it is needed. This opportunity for enhanced flexibility is an option under both approaches so long as the Unquestionably Strong Benchmark maintains a material surplus over the Capital Conservation Buffer as it currently does.

But also some challenges …

APRA notes that the Adjusted Capital Ratio approach:

  • May significantly increase operational complexity for ADIs by virtue of the fact that the application of the APRA Overlay Adjustment would result in variable capital ratio requirements,

• Potentially results in variable minimum capital requirements which introduces complexity in analysing capital buffers and may undermine the desired transparency, and

• Reduces the dollar value of the 5.125 per cent (of RWA) loss absorption trigger point.

Do the advantages of the Adjusted Capital Ratio approach outweigh the challenges?

The short answer, I think, is yes … albeit with some qualifications.

So far as I can see, the added complexity only enters the discussion to the extent that some of the APRA Overlay Adjustment is applied to increase the minimum capital requirement. Most, if not all, of the operational complexity is avoided if the “Overlay Adjustment” is confined to increasing the size of the capital buffer.

Conversely, the benefits of increased responsiveness (or risk sensitivity) and flexibility lie in an increased capital buffer.

It follows then that the best way to pursue this approach is for any harmonised adjustments to the reported capital ratio to be confined to a higher CCB. This begs the question whether all the Overlay Adjustment should be applied to the capital buffer. I address that question in my responses below to some of the questions APRA has posed to solicit industry feedback.

One issue not covered in the Discussion Paper in any detail is that the capital ratios under Approach 2 will be more sensitive to any changes in the numerator. This is a simple mathematical consequence of RWA being lower if more harmonised measures are adopted. I do not see this as a problem but the heightened risk sensitivity of the framework needs to be clearly understood beforehand to minimise the potential for larger changes in capital ratios to be misunderstood. A more risk sensitive capital ratio may even be an advantage. This may not be obvious but there is a body of research which suggests a more responsive, more volatile, measure of capital adequacy can be beneficial to the extent that it prompts greater risk awareness on the part of bank management and external stakeholders. Greg Ip’s book “Foolproof” offers an introduction to some of this research but a simple example illustrating the point is the way that the benefits of improved braking in modern cars is offset to some extent by people driving faster.

APRA concludes its discussion paper with some direct questions.

There are 8 questions in all but in the context of this post I will have a go at addressing 3 of them, questions 2, 7 and 8.

Question 2: If APRA were to apply a combination of Approach 1 and Approach 2, which aspects of relative conservatism are best suited to be treated under Approach 2?

If you accept the argument that the minimum capital requirement should continue to be a set value (i.e. not subject to periodic adjustment), then the aspects of relative conservatism best suited to Approach 2 are those which can reasonably be assigned to an increase in, and regular adjustment of, one or more of the capital buffers.

Running through the list of adjustments currently applied to generate the internationally harmonised capital ratios, we can distinguish three broad categories of APRA conservatism:

  1. The extra credit risk related losses a bank might expect to experience under a very severe recession or financial crisis style scenario but not necessarily a gone concern where losses extend into the tail of the loss distribution
  2. Assets whose value depends on the ADI being a going concern and consequently are less certain to be realisable if the bank is in liquidation or has otherwise reached a point of non-viability
  3. Capital deduction intended to avoid “double counting” capital invested outside the ADI include

There are very few areas of black and white in the response to this question, but the first group are the items of APRA conservatism that I think have the clearest claim to be included in the capital buffer. These reflect potential loss scenarios that are conservative but still within the domain of plausibly severe downturns in the business cycle; this would encompass the following capital ratio adjustments:

  • the 20 per cent loss given default (LGD) portfolio constraint required for residential mortgage exposures;
  • the LGD parameter for unsecured non-retail exposures;
  • credit conversion factors (CCFs) for undrawn non-retail commitments;
  • use of supervisory slotting and the scaling factor for specialised lending;
  • risk weights for other retail exposures covered by the standardised approach to credit risk; and
  • the exchange rate used to convert Euro-denominated thresholds in the Basel capital framework into Australian dollars.

The second category are assets which have a value if the bank is a going concern but cannot necessarily be relied upon in non viability scenarios; I.e.

  • deferred tax assets arising from timing differences;
  • capitalised expenses and transaction costs
  • the capital requirement applied by APRA for IRRBB (I am open to arguments that I am being too harsh on IRRBB)

The third category captures capital that is committed to risks where the bank is taking a first loss exposure including

  • investments in other financial institutions;
  • holdings of subordinated tranches of securitisations.
  • investments in commercial entities;

Another way to explore this question is to map these three categories to the traditional graphic expression of a bank loss distribution and establish whether they are expected to lie:

  • closer to the middle of the loss distribution (sometimes framed as a 1 in 25 year downturn or the kinds of losses we expect in a severe downturn)
  • Or closer to the “tail” of the loss distribution (typically expressed as a 1 in 1000 year loss in regulatory capital terms).

To be clear, I am not seeking to ascribe any level of precision to these statistical probabilities; simply to distinguish between the relative likelihood of the items of conservatism that APRA has embedded in its current measure of capital adequacy. These three items tend to be treated as equivalent under the current approach and enhanced disclosure per Approach 1 will do nothing to address this conflation of risks.

Question 7: Would increasing the size of capital buffers (either by increasing the CCB or by setting a non-zero baseline CCyB) relative to PCR appropriately balance capital strength with financial stability through the cycle?

I have advocated the benefits of a non zero baseline CCYB in previous posts. One of these posts focused on the approach adopted by the Bank of England where I identified two advantages.

Firstly, it directly addresses the problem of failing to detect/predict when systemic risk in the banking system requires prudential intervention. A lot of progress has been made in dealing with this challenge, not the least of which has been to dispense with the idea that central banks had tamed the business cycle. The financial system however retains its capacity to surprise even its most expert and informed observers so I believe it is better to have the foundations of a usable counter cyclical capital buffer in place as soon as possible after the post crisis repair phase is concluded rather than trying to predict when it might be required.

The BOE approach still monitors a range of core indicators for the CCyB grouped into three categories.

• The first category includes measures of ‘non-bank balance sheet stretch’, capturing leverage in the broader economy and in the private non-financial (ie household and corporate) sector specifically.

• The second category includes measures of ‘conditions and terms in markets’, which capture borrowing terms on new lending and investor risk appetite more broadly.

• The third category includes measures of ‘bank balance sheet stretch’, which capture leverage and maturity/liquidity transformation in the banking system.

However the BOE implicitly accepts that it can’t predict the future so it substitutes a simple, pragmatic and error resilient strategy (put the default CCyB buffer in place ASAP) for the harder problem of trying to predict when it will be needed. This strategy retains the option of increasing the CCyB, is simpler to administer and less prone to error than the standard BCBS approach. The BOE might still miss the turning point but it has a head start on the problem if it does.

The BOE also integrates its CCyB strategy with its approach to stress testing. Each year the stress tests include a scenario:

“intended to assess the risks to the banking system emanating from the financial cycle – the “annual cyclical scenario”

The severity of this scenario will increase as risks build and decrease after those risks crystallise or abate. The scenario might therefore be most severe during a period of exuberance — for example, when credit and asset prices are growing rapidly and risk premia are compressed. That might well be the point when markets and financial institutions consider risks to be lowest. And severity will be lower when exuberance has corrected — often the time at which markets assess risks to be largest. In leaning against these tendencies, the stress-testing framework will lean against the cyclicality of risk taking: it will be countercyclical.”

The Bank of England’s approach to stress testing the UK banking system – October 2015 (page 5)

I have discussed the BOE approach at length but the Canadian supervisor has also introduced some interesting innovations in the way that it uses a capital buffer to address the systemic risk of large banks that are worth considering as part of this review.

The second reason I favour a non zero baseline is because I believe it is likely to result in a more “usable” buffer once risk crystallizes (not just systemic risk) and losses start to escalate.

In theory, the standard capital conservation buffer (CCB) introduced under Basel III can absorb any unexpected increase in losses and allow banks the time to progressively rebuild the buffer when economic conditions improve

In practice, the upper boundary of the CCB acts as a de facto minimum requirement such that banks face strong market pressure to immediately rebuild the buffer potentially at material cost to shareholders

There are no guarantees for what happens to banking systems under stress, but a flexible buffer that is sensitive to the state of the credit cycle is I think far more fit for purpose.

It is important to note that a non zero CCYB is an option under both approaches. There is potentially enough surplus capital in the Unquestionably Strong calibration for a non-zero CCYB to be introduced without requiring banks to raise any more capital. This would be so under either of the approaches that APRA has outlined.

So a larger buffer would be desirable from the perspective of increased comparability and transparency but the advantages of a non zero CCYB could also be pursued under the Unquestionably Strong status quo or Approach 1.

Question 8: What may be some of the potential impacts if APRA increases the prescribed loss absorption trigger point above 5.125 per cent of RWA?

The rationale for increasing the PONV Trigger is that APRA believes it is important to preserve the value of the trigger in dollar terms.

I can see that it is important to have a PONV trigger well before a bank reaches the point of insolvency (I.e. where liabilities exceed assets).

It is less clear that the reduction in the dollar value of the trigger point is sufficiently material to matter.

What really matters is the amount of contingent capital available to be converted into common equity if the PONV conversion trigger is pulled.

In the absence of this source of new capital, the fact that a bank has X billion dollars more or less of book equity (according to the financial accounts) at the point of deemed non-viability is arguably irrelevant to whether it remains a going concern.

I am also pretty sure that we do not want the operational complexity associated with a PONV trigger that moves around over time as a result of seeking to compensate for the impact of the Overlay Adjustment on capital deductions and RWA.

Canada innovates in the capital buffer space

The Canadian prudential regulator (OFSI) has made an interesting contribution to the capital buffer space via its introduction of a Domestic Stability Buffer (DSB).

Key features of the Domestic Stability Buffer:

  • Applies only to Domestic Systemically Important Banks (D-SIB) and intended to cover a range of systemic vulnerabilities not captured by the Pillar 1 requirement
  • Vulnerabilities currently included in the buffer include (i) Canadian consumer indebtedness; (ii) asset imbalances in the Canadian market and (iii) Canadian institutional indebtedness
  • Replaces a previously undisclosed Pillar 2 loading associated with this class of risks (individual banks may still be required to hold a Pillar 2 buffer for idiosyncratic risks)
  • Initially set at 1.5% of Total RWA and will be in the range of 0 to 2.5%
  • Reviewed semi annually (June and December); with the option to change more frequently in exceptional circumstances
  • Increases phased in while decreases take effect immediately

Implications for capital planning:

  • DSB supplements the Pillar 1 buffers (Capital Conservation Buffer, D-SIB surcharge and the Countercyclical Buffer)
  • Consequently, the DSB will not result in banks being subject to the automatic constraints on capital distributions that are applied by the Pillar 1 buffers
  • Banks will be required to disclose that the buffer has been breached and the OFSI will require a remediation plan to restore the buffer

What is interesting:

  • The OFSI argues that translating the existing Pillar 2 requirement into an explicit buffer offers greater transparency which in turn “… will support banks’ ability to use this capital buffer in times of stress by increasing the market’s understanding of the purpose of the buffer and how it should be used”
  • I buy the OFSI rationale for why an explicit buffer with a clear narrative is a more usable capital tool than an undisclosed Pillar 2 requirement with the same underlying rationale
  • The OFSI retains a separate Countercyclical Buffer but this Domestic Stability Buffer seems similar but not identical in its over-riding purpose (to me at least) to the approach that the Bank of England (BoE) has adopted for managing the Countercyclical Buffer.
  • A distinguishing feature of both the BoE and OFSI approaches is linking the buffer to a simple, coherent narrative that makes the buffer more usable by virtue of creating clear expectations of the conditions under which the buffer can be used.

Bottom line is that I see useful features in both the BoE and OFSI approach to dealing with the inherent cyclicality of banking.  I don’t see  either of the proposals doing much to mitigate the cyclicality of banking but I do see them offering more potential for managing the consequences of that cyclicality. Both approaches seem to me to offer material improvements over the Countercyclical Buffer as originally conceived by the BCBS.

It will be interesting to see if APRA chooses to adapt elements of this counter cyclical approach to bank capital requirements.

If I am missing something, please let me know …

From the Outside

The answer is more loan loss provisions, what was the question?

I had been intending to write a post on the potential time bomb for bank capital embedded in IFSR9 but Adrian Docherty has saved me the trouble. He recently released an update on IFRS9 and CECL titled Much Ado About Nothing or Après Moi. Le Deluge?

This post is fairly technical so feel free to stop here if you are not a bank capital nerd. However, if you happen to read someone saying that IFRS 9 solves one of the big problems encountered by banks during the GFC then be very sceptical. Adrian (and I) believe that is very far from the truth. For those not discouraged by the technical warning, please read on.

The short version of Adrian’s note is:

  • The one-off transition impact of the new standard is immaterial and the market has  largely ignored it
  • Market apathy will persist until stressed provisions are observed
  • The dangers of ECL provisioning (procyclical volatility, complexity and subjectivity) have been confirmed by the authorities …
  • … but criticism of IFRS 9 is politically incorrect since the “correct” narrative is that earlier loan loss provisioning fulfils the G20 mandate to address the problem encountered during the GFC
  • Regulatory adaption has been limited to transition rules, which are not a solution. We need a fundamentally revised Basel regime – “Basel V” – in which lifetime ECL provisions somehow offset regulatory capital requirements.

Adrian quotes at length from Bank of England (BoE) commentary on IFRS 9. He notes that their policy intention is that the loss absorbing capacity of the banking system is not impacted by the change in accounting standards but he takes issue with the way that they have chosen to implement this policy approach. He also calls out the problem with the BoE instruction that banks should assume “perfect foresight” in their stress test calculations.

Adrian also offers a very useful deconstruction of what the European Systemic Risk Board had to say in a report they published in July 2017 . He has created a table in which he sets out what the report says on one column and what they mean in another (see page 8 of Adrian’s note).

This extract from Adrian’s note calls into question whether the solution developed is actually what the G20 asked for …

“In official documents, the authorities still cling to the assertion that ECL provisioning is good for financial stability “if soundly implemented” or “if properly applied”. They claim that the new standard “means that provisions for potential credit losses will be made in a timely way”. But what they want is contrarian, anti-cyclical ECL provisioning. This is simply not possible, in part because of human psychology but, more importantly, because the standard requires justifiable projections based on objective, consensual evidence.

Surely the authorities know they are wrong? Their arguments don’t stack up.

They hide behind repeated statements that the G20 instructed them to deliver ECL provisioning, whereas a re-read of the actual instructions clearly shows that a procyclical, subjective and complex regime was not what was asked for.

It just doesn’t add up.”

There is of course no going back at this point, so Adrian (rightly I think) argues that the solution lies in a change to banking regulation to make Basel compatible with ECL provisioning. I will quote Adrian at length here

 “So the real target is to change banking regulation, to make Basel compatible with ECL provisioning. Doing this properly would constitute a genuine “Basel V”. Yes, the markets would still need to grapple with complex and misleading IFRS 9 numbers to assess performance. But if the solvency calculation could somehow adjust properly for ECL provisions, then solvency would be stronger and less volatile.

And, in an existential way, solvency is what really matters – it’s the sina qua non  of a bank. Regulatory solvency drives the ability of a bank to grow the business and distribute capital. Accounting profit matters less than the generation of genuinely surplus solvency capital resources.

Basel V should remove or resolve the double count between lifetime ECL provisions and one-year unexpected loss (UL) capital resources. There are many different ways of doing this, for example:

A. Treat “excess provisions” (the difference between one-year ECL and lifetime ECL for Stage 2 loans) as CET1

B. Incorporate expected future margin as a positive asset, offsetting the impact of expected future credit losses

C. Reduce capital requirements by the amount of “excess provisions” (again, the difference between one-year ECL and lifetime ECL for Stage 2 loans) maybe with a floor at zero

D. Reduce minimum regulatory solvency ratios for banks with ECL provisioning (say, replacing the Basel 8% minimum capital ratio requirement to 4%)

All of these seem unpalatable at first sight! To get the right answer, there is a need to conduct a fundamental rethink. Sadly, there is no evidence that this process has started. The last time that there was good thinking on the nature of capital from Basel was some 17 years ago. It’s worth re-reading old papers to remind oneself of the interaction between expected loss, unexpected loss and income.  The Basel capital construct needs to be rebuilt to take into account the drastically different meaning of the new, post-IFRS 9 accounting equity number.”

Hopefully this post will encourage you to read Adrian’s note and to recognise that IFRS 9 is not the cycle mitigating saviour of banking it is represented to be. The core problem is not so much with IFRS9 itself (though its complexity and subjectivity are issues) but more that bank capital requirements are not constructed in a way that compensates for the inherent cyclicality of the banking industry. The ideas that Adrian has listed above are potentially part of the solution as is revisiting the way that the Counter cyclical Capital Buffer is intended to operate.

From the Outside